295 research outputs found

    Hard photodisintegration of a proton pair

    Get PDF
    We present a Study of high energy photodisintegration of proton-pairs through the gamma + (3)He -\u3e p + p + n channel. Photon energies, E(gamma), from 0.8 to 4.7 GeV were used in kinematics corresponding to a proton pair with high relative momentum and a neutron nearly at rest. The s(-11) scaling of the cross section, as predicted by the constituent counting rule for two nucleon photodisintegration, was observed for the first time. The onset of the scaling is at a higher energy and the cross section is significantly lower than for deuteron (pn pair) photoclisintegration. For E(gamma) below the scaling region, the scaled cross section was found to present a strong energy-dependent structure not observed in deuteron photodisintegration. (C) 2010 Elsevier B.V. All rights reserved

    Quasi elastic cross sections for the Bi-209(e, e \u27 p)Pb-208 reaction: Jefferson Lab experiment E06007

    Get PDF
    Quasi elastic cross sections were measured for the first time for both negative and positive missing momenta for the Bi-209(e, e\u27p)Pb-208 reaction leading to the ground state and hole states of Pb-208. Experimental cross sections obtained between -0.3 GeV/c to 0.3 GeV/c agree with theoretical calculations using RDWIA techniques both in shape and magnitude for the ground state. The data for the ground state production of Pb-208 are consistent with a theoretical model assuming a single proton(1.06 +/- 0.10) in the 1h9/2 orbit in Bi-209

    Exclusive neutral pion electroproduction in the deeply virtual regime

    Get PDF
    We present measurements of the ep -\u3e ep pi(0) cross section extracted at two values of four-momentum transfer Q(2) = 1.9 GeV(2) and Q(2) = 2.3 GeV(2) at Jefferson Lab Hall A. The kinematic range allows one to study the evolution of the extracted cross section as a function of Q(2) and W. Results are confronted with Regge-inspired calculations and GPD predictions. An intepretation of our data within the framework of semi-inclusive deep inelastic scattering is also discussed

    A high-finesse Fabry-Perot cavity with a frequency-doubled green laser for precision Compton polarimetry at Jefferson Lab

    Full text link
    A high-finesse Fabry-Perot cavity with a frequency-doubled continuous wave green laser (532~nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064~nm) beam from a ytterbium-doped fiber amplifier seeded by a Nd:YAG nonplanar ring oscillator laser is frequency doubled in a single-pass periodically poled MgO:LiNbO3_{3} crystal. The maximum achieved green power at 5 W IR pump power is 1.74 W with a total conversion efficiency of 34.8\%. The green beam is injected into the optical resonant cavity and enhanced up to 3.7~kW with a corresponding enhancement of 3800. The polarization transfer function has been measured in order to determine the intra-cavity circular laser polarization within a measurement uncertainty of 0.7\%. The PREx experiment at Jefferson Lab used this system for the first time and achieved 1.0\% precision in polarization measurements of an electron beam with energy and current of 1.0~GeV and 50~μ\muA.Comment: 20 pages, 22 figures, revised version of arXiv:1601.00251v1, submitted to NIM

    Hard Photodisintegration of a Proton Pair

    Get PDF
    We present a study of high energy photodisintegration of proton-pairs through the γ + 3He → p + p + n channel. Photon energies, Eγ , from 0.8 to 4.7 GeV were used in kinematics corresponding to a proton pair with high relative momentum and a neutron nearly at rest. The s−11 scaling of the cross section, as predicted by the constituent counting rule for two nucleon photodisintegration, was observed for the first time. The onset of the scaling is at a higher energy and the cross section is significantly lower than for deuteron (pn pair) photodisintegration. For Eγ below the scaling region, the scaled cross section was found to present a strong energy-dependent structure not observed in deuteron photodisintegration

    First Measurement of Unpolarized Semi-Inclusive Deep-Inelastic Scattering Cross Sections From a He 3 Target

    Get PDF
    The unpolarized semi-inclusive deep-inelastic scattering (SIDIS) differential cross sections in 3He(e,e′π±)X have been measured for the first time in Jefferson Lab experiment E06-010 with a 5.9GeV e- beam on a 3He gas target. The experiment focuses on the valence quark region, covering a kinematic range 0.12\u3cxbj\u3c0.45,1\u3cQ2\u3c4(GeV/c)2,0.45\u3czh\u3c0.65, and 0.05\u3cPt\u3c0.55GeV/c. The extracted SIDIS differential cross sections of π± production are compared with existing phenomenological models while the 3He nucleus approximated as two protons and one neutron in a plane-wave picture, in multidimensional bins. Within the experimental uncertainties, the azimuthal modulations of the cross sections are found to be consistent with zero. © 2017 American Physical Society

    Moments of the Neutron \u3cem\u3eg\u3c/em\u3e\u3csub\u3e2\u3c/sub\u3e Structure Function at Intermediate \u3cem\u3eQ\u3c/em\u3e\u3csup\u3e2\u3c/sup\u3e

    Get PDF
    We present new experimental results for the 3He spin structure function g2 in the resonance region at Q2 values between 1.2 and 3.0(GeV/c)2. Spin dependent moments of the neutron were extracted. Our main result, the inelastic contribution to the neutron d2 matrix element, was found to be small at ⟨Q2⟩=2.4(GeV/c)2 and in agreement with the lattice QCD calculation. The Burkhardt-Cottingham sum rule for 3He and the neutron was tested with the measured data and using the Wandzura-Wilczek relation for the low x unmeasured region
    • …
    corecore